by Tolga Yarman | Apr 15, 2014 | Paper

We show that, just like the gravitational field, the electric field too slows down the internal mechanism of a clock, entering into interaction with the field. This approach explains substantially, the retardation of the decay of the muon, bound to a nucleus....
by Tolga Yarman | Apr 15, 2014 | Paper

Via Newton’s law of gravitation between two static masses exculsively, and the energy conservation law, in the broader sense of the concept of energy embodying the relativistic mass & energy equivalence, on the one side, and quantum mechanics, on the other,...
by Tolga Yarman | Apr 15, 2014 | Paper

Herein, a full quantum mechanical deployment is provided on the basis of the frame drawn in the previous Part I. Thus it is striking to find out that occurrences taking place at both atomic and celestial scales, can be described based on similar tools.;Accordingly,...
by Musa D. Abdullahi | Apr 15, 2014 | Paper

For an electron of mass m and charge e moving at time t with velocity v and acceleration d v /dt in an electric field of magnitude E, the accelerating force is proposed, in accordance with Newton’s second law of motion, as F = eE(c – v)/c = m(d v /dt). The...
by Musa D. Abdullahi | Apr 15, 2014 | Paper

An electric charge Q of mass m, in the form of a spherical shell of radius a, moving at time t with velocity v and acceleration d v / d t, generates an electro-dynamic field X proportional to the acceleration. The field X acts on the self-same charge Q to produce an...